
ZUR DISKUSSION GESTELLT / SOFTWARE ALS INSTITUTION }

Software als Institution
und ihre Gestaltbarkeit

Carsten Orwat · Oliver Raabe
Erik Buchmann · Arun Anandasivam

Johan-Christoph Freytag
Natali Helberger · Kei Ishii

Bernd Lutterbeck · Dirk Neumann
Thomas Otter · Frank Pallas
Ralf Reussner · Peter Sester

Karsten Weber · Raymund Werle

Software greift immer
mehr regulierend

in unser Leben ein,
d. h. sie wirkt ähnlich

wie herkömmliche
Institutionen wie z. B.

Recht, Verträge oder
Verhaltensnormen.

Die Anwendung der
interdisziplinären

Institutionenforschung
scheint daher zur

Erforschung und Gestal-
tung dieses Sachverhalts
vielversprechend zu sein.

Einleitung
“... a newly salient regu-
lator.” [14, S. 5] und “We
are all regulated by soft-
ware now.”[4, S. 1758]:
Diese Ausdrücke ver-
deutlichen die Thematik
dieses Artikels. Mit dem
zunehmenden Einsatz
von Softwaresystemen
entwickelt sich Software
zu einem Regelungs-
mechanismus nicht
nur für individuelles
Verhalten, sondern auch

für zwischenmenschliche Interaktionen, z. B. in
E-Commerce-Systemen, Online-Kooperationstools
oder Systemen des digitalen Rechtemanagements.
Software regelt Zugang sowie Austausch- und Nut-
zungsformen von Daten und Informationen in
Forschung und Privatleben, oder sie bestimmt
Transaktionsformen zwischen Unternehmen und
in unternehmensinternen Abläufen. Ambient In-
telligence oder Ubiquitous Computing werden
Softwareregelungen in nahezu jeden Lebensbereich
transportieren.

Da Entwicklung und Gestaltung von Software
eine verantwortliche Rolle in der Gesellschaft er-
langt haben, ist die Erforschung der Wirkungen
einer weitgehenden Durchdringung der Alltags-
und Berufswelt mit Softwareanwendungen sowie
deren Gestaltungsoptionen dringend geboten. Mit
diesem Artikel soll ein neuartiger, interdiszipli-
närer Forschungsansatz vorgestellt werden: die
Betrachtung von Software-Regelungsmechanismen

als Institution. Diese Perspektive ermöglicht die
Einbindung von Erkenntnissen und Forschungs-
methoden aus unterschiedlichsten Teildisziplinen

DOI 10.1007/s00287-009-0404-z
© Springer-Verlag 2009

Carsten Orwat
Karlsruher Institut für Technologie, Institut
für Technikfolgenabschätzung und Systemanalyse,
Postfach 3640, 76021 Karlsruhe, Deutschland
E-Mail: orwat@kit.edu

Oliver Raabe · Peter Sester
Karlsruher Institut für Technologie, Institut
für Informationsrecht,
Karlsruhe, Deutschland
E-Mail: oliver.raabe@kit.edu

Erik Buchmann · Ralf Reussner
Karlsruher Institut für Technologie, Institut
für Programmstrukturen und Datenorganisation,
Karlsruhe, Deutschland
E-Mail: erik.buchmann@kit.edu

Arun Anandasivam
Karlsruher Institut für Technologie, Institut für Informations-
wirtschaft und -Management,
Karlsruhe, Deutschland

Johan-Christoph Freytag
Humboldt-Universität zu Berlin, Institut für Informatik,
Berlin, Deutschland

Natali Helberger
Universität Amsterdam, Institut für Informationsrecht,
Amsterdam, Niederlande

Kei Ishii · Bernd Lutterbeck · Frank Pallas
Technische Universität Berlin, Lehrstuhl Informatik und
Gesellschaft,
Berlin, Deutschland

Dirk Neumann
Universität Freiburg, Lehrstuhl für Wirtschaftsinformatik,
Freiburg, Deutschland

Thomas Otter
Gartner Deutschland GmbH,
München, Deutschland

Karsten Weber
Universität Opole,
Opole, Polen

Raymund Werle
Max-Planck-Institut für Gesellschaftsforschung,
Köln, Deutschland

{ SOFTWARE ALS INSTITUTION

Zusammenfassung
Software regelt immer mehr zwischenmensch-
liche Interaktionen. Üblicherweise werden
die Funktionsmechanismen, Wirkungen und
Gestaltungsoptionen von Regeln in der In-
stitutionenforschung behandelt. In diesem
Artikel soll beleuchtet werden, inwieweit sich
Ansätze der Institutionenforschung auf Soft-
ware anwenden lassen und was sich aus dieser
Forschungsperspektive zu den Regelungswir-
kungen und Gestaltungsoptionen von Software
ableiten lässt.

der Institutionenforschung, z. B. aus Wirtschafts-,
Rechts-, Organisations- und Politikwissenschaften
sowie aus Soziologie und (politischer) Philosophie,
wobei der Neuen Institutionenökonomie [26, 27]
eine besondere Rolle zukommen kann. Im Allgemei-
nen befasst sich die Institutionenforschung mit der
Analyse der Wirkungsweisen von Regelsystemen,
um ihre Effekte in Organisationen, bei wirtschaft-
lichen Transaktionen oder auf die Gesellschaft zu
verstehen und sie möglichst optimal zu gestalten.
Um das Potenzial dieser Perspektive auszuloten und
zukünftige Forschungsschwerpunkte zu umreißen,
wurde im Dezember 2008 ein interdisziplinärer
Workshop mit 16 Experten aus Informatik, Recht,
Wirtschaft, Philosophie und Soziologie veranstaltet
(http://www.kit.edu/sai2008/). Dieser Artikel fasst
die dabei gewonnenen Erkenntnisse zusammen und
zeigt einige Potenziale auf, die eine interdisziplinäre
Institutionenforschung für die Gestaltung von Soft-
waresystemen haben kann, um einen Diskurs zum
Thema ,,Software als Institution“ in Gang zu setzen.

Im Folgenden wird untersucht, was es bedeutet,
Software als Institution aufzufassen, wie das Verhält-
nis zu bestehenden Institutionen und insbesondere
zum Recht zu sehen ist, wie Softwareanwendungen
effektive Regelungsmechanismen darstellen können
und welche Erkenntnisse aus der Institutionenfor-
schung für die Gestaltung von Softwareinstitutionen
genutzt werden können.

Warum ,,Software als Institution“?

Zum Institutionenbegriff
Unter Institutionen werden anerkannte Systeme
von Regeln verstanden, die zwischenmenschliche

Interaktionen ermöglichen, strukturieren oder
beschränken [7]. Institutionen umfassen förmliche
Regeln (staatlich gesetztes Recht, niedergeschriebene
Verträge) und ungeschriebene Verhaltensnor-
men oder soziale Konventionen [7, 16, 19, 20, 22].
Wesentliche Elemente sind die Regeln selbst, aber
auch die Mechanismen zur Durchsetzung des Gesoll-
ten [35]. Oft spielen verschiedene Institutionstypen
zusammen, z. B. werden Verträge nur durchsetz-
bar, wenn ein funktionierendes Rechtssystem zur
Verfügung steht [18, 26].

Werden Institutionen angewandt, kontrolliert
und durchgesetzt, so bringen sie Ordnung in so-
ziale Tätigkeiten und vermindern Unsicherheit,
die z. B. aus willkürlichem oder opportunisti-
schem Verhalten in einer Interaktion resultiert.
So werden z. B. bei Handelstätigkeit die Kosten
der Anbahnung, Durchführung, Kontrolle und
Durchsetzung von Austauschbeziehungen, d. h.
die Transaktionskosten, dadurch bestimmt, wie
sicher eine Leistung gehandelt werden kann. Ent-
scheidend ist, welche Institutionen beteiligt sind,
die opportunistisches Verhalten ausschließen
oder verringern [34]. Die Gestaltung von Insti-
tutionen sorgt also dafür, wie effizient Handel
stattfindet und hat Einfluss auf Arbeitsteilung,
Spezialisierung und Produktivität. Ausgestaltung
und Wirksamkeit von Institutionen gehören zu
den bestimmenden Faktoren für wirtschaftliche
Leistungsfähigkeit, gesellschaftlichen Wohlstand
und soziale Entwicklung, sowohl hemmend als auch
fördernd [18, 19].

Verständnis von Softwareinstitutionen
Software kann eine doppelte Funktion einnehmen.
Einerseits wird sie als Transmissionsmedium und
Durchsetzungsmechanismus von anderen Institu-
tionentypen eingesetzt, z. B. bei DRM-Systemen,
die Verträge durchsetzen. Hier entspricht Software
einer technischen Vorkehrung zur Durchsetzung
von Rechten, ähnlich wie beispielsweise Architektur
zur Abgrenzung von Eigentumsrechten dient [11].
Andererseits kann Software neue Regeln definieren
und durchsetzen, z. B. durch die Festlegung eines
Workflows in Unternehmen. Daher kann Software
auch den Charakter einer eigenständigen Institution
haben [4]. Die letztere Funktion ist bisher nur wenig
untersucht worden [15, S. 4].

Reguliert Software individuelles Verhalten
oder soziale Interaktionen, so kann man von

http://www.kit.edu/sai2008/

Abstract
Software increasingly establishes the rules
of human interactions. Usually, functional
mechanisms, implications, and options of shap-
ing such rules are the subject of institutional
research. Thus, we describe in this paper how
institutional research can be applied to software
matters and which insights about implications
and options of shaping can be obtained from
this research field.

,,programmierten Institutionen“ oder Software-
institutionen sprechen. Softwareanwendungen
beinhalten ein System von formalen Regeln, die
a) vom Softwareentwickler implementiert werden
oder b) die Berechtigte durch Systemeinstellungen
anderen Nutzern auferlegen. Softwareinstitutio-
nen wirken oft mit andere Regeln zusammen, z. B.
mit Recht [32] (Urheberrecht, Vertragsrecht) oder
sozialen Normen.

Wie regelt Software? Gegenüber konventionel-
len Institutionen wie sozialen Normen, Verträgen
oder Recht, kann Software einige Besonderheiten
aufweisen [4, 13, 25, 31]:

– Software funktioniert automatisch. Regeln werden
automatisch und ohne menschliche Auslegungs-
spielräume durchgesetzt. Es wird vorab definiert,
welche Handlungsmöglichkeiten Nutzer haben
bzw. anderen Nutzern gewähren können.

– Software regelt unmittelbar. Im Gegensatz zu z. B.
Recht, das erst ex post durch Gerichte durchge-
setzt wird, regelt Software ex ante effektiv die
Handlungsspielräume der Nutzer.

– Software regelt teilweise unbemerkt. Die Neben-
funktionen von Softwareanwendungen können
wenig oder gar nicht sichtbar für die Betroffenen
sein.

– Software regelt zunehmend kontextorientiert.
Regelungen können kontextabhängig erfolgen, z. B.
entsprechend der Umgebung oder der Situation des
Nutzers.

– Softwareregeln sind dynamisch. Über die Weiter-
entwicklung der Software können sich Regeln än-
dern. Die Regelentwicklung verläuft nach software-
spezifischen Mustern, die oft durch ökonomische
oder technische Motive geprägt sind.

– Software ist vielgestaltig und präzise formbar.
Software ist detailliert für komplexeste Interak-
tionen gestaltbar. Teilweise werden diese dadurch
überhaupt erst regelbar.

Softwareinstitutionen und Recht
In den Rechtswissenschaften wurde die Steue-
rungsfähigkeit von Software bereits untersucht
(vgl. ,,Lex Informatica“ [25], ,,Code as Law“ [13, 14],
,,Regulation by Software“ [4] oder ,,Regulation
by Machine“ [24]). Ein prominentes Beispiel sind
Systeme des digitalen Rechtemanagements (DRM),
welche die im Urheberrecht definierten Nutzungs-
möglichkeiten durchsetzen aber auch verändern
bzw. einschränken können. Dabei bestehen Be-
denken, dass ,,neues Recht“ durch private Akteure
geschaffen wird, welches mit staatlich gesetztem
Recht kollidieren kann [6, 13, 24, 29].

Allerdings ist Software nicht mit Recht gleichzu-
setzen, d. h. Software entsteht in der Regel außerhalb
der etablierten, demokratischen Gesetzgebungs-
verfahren und die ihr zugrunde liegenden Regeln
können nicht durch den Richter durchgesetzt wer-
den. Der Ausdruck ,,Code as Law“ [13] verdeutlicht
daher lediglich deren regulierende Wirkung jen-
seits des staatlichen Rechts. So kann die Institution
,,Software“ ähnliche Wirkungen erzeugen wie die In-
stitution ,,staatliches Recht“. Dies gilt insbesondere
für Regeln, die von privaten Akteuren als Verträge
oder Selbstregulierung gesetzt und mit Software
durchgesetzt werden.

Dabei ist es problematisch, dass staatlich ge-
setztes Recht, das unter Abwägung der Interessen
verschiedenster Interessengruppen entsteht, durch
private technisch durchgesetzte Regelungen ,,über-
schrieben“ oder modifiziert werden könnte [6, 24].
So ist beispielsweise die Institution Eigentums-
recht das Ergebnis der staatlichen Abwägung von
Rechten der Eigentümer und den Interessen der
Allgemeinheit. Auch das geistige Eigentumsrecht
bzw. Urheberrecht ist das Ergebnis von Abwägungen
zwischen Verwertungsinteressen der Urheberrechts-
inhaber und Schrankenbestimmungen im Interesse
der Allgemeinheit (z. B. Zitiermöglichkeiten für
die Wissenschaft). Software wird nicht in einem
Prozess staatlicher Güterabwägung entwickelt
und etabliert, sondern folgt in der Regel techni-
schen Möglichkeiten und Marktmechanismen,
insbesondere der Marktstellung von Anbieter und
Nachfrager.

{ SOFTWARE ALS INSTITUTION

Regelungswirkungen
von Softwareinstitutionen

Softwareinstitutionen können positive Wirkungen
haben, z. B. im außerrechtlichen Bereich. Sie können
sogar effektiver als konventionelle Institutionen
wie soziale Normen oder Recht sein. So wurde in
frühen File-Sharing-Netzwerken beobachtet, dass
Nutzer Dateien zur Verfügung stellen, weil sie der
sozialen Norm des Teilens folgten und erwarteten,
dass andere sich ebenfalls daran orientieren [5]. Mit
Wachsen der P2P-Netzwerke stieg jedoch die Zahl
der sogenannten ,,free rider“, die sich nicht an diese
Norm hielten. Viele aktuelle P2P-Systeme knüpfen
nun den Zugang zu Ressourcen an die Bereitstellung
eigener Ressourcen. Auf technische Weise erzwingt
Software reziprokes bzw. kooperatives Verhalten
und verhindert Regelabweichungen [3].

Auch das Beispiel Datenschutz zeigt, dass
Softwareinstitutionen gegenüber dem ordnungs-
rechtlichen Ansatz – mit seinen allseits bekannten
Defiziten [28] – wirkungsvolle Regelungsmecha-
nismen darstellen können. Ein Beispiel dafür sind
hippokratische Datenbanken [1]. Klassische Daten-
banken gestatten mindestens dem Administrator
den Vollzugriff auf die Daten. Hippokratische
Datenbanken hingegen unterliegen spezifischen
Grundsätzen, nach denen personenbezogene Da-
tensätze ausschließlich gemäß vorab definierter
Regeln kontext- oder präferenzbezogen verarbeitet
und dem Anwender zur Verfügung gestellt werden.
Diese Regeln können vom Systembetreiber oder von
den betreffenden (d. h. beschriebenen) Personen
festgelegt werden. Es handelt sich also um eine auto-
matisierte, explizit definierte, datenbanküberwachte
und -gesicherte Einhaltung organisatorischer Re-
geln und Benutzerpräferenzen. Bei der Umsetzung
dieser Regeln und Präferenzen ist der Ersteller
jedoch nicht festgelegt. Ebenso wie beim Beispiel
DRM und Urheberrecht kann auch bei Hippokra-
tischen Datenbanken und Datenschutzrecht ein
Spannungsverhältnis zu staatlich gesetztem Recht
entstehen. Zudem ist nicht klar, welche Datenschutz-
regeln [2, 21] in welcher Form und mit welchem
technischen Ansatz umzusetzen sind.

Gestaltungsfragen
von Softwareinstitutionen

Wenn Software menschliches Verhalten und In-
teraktionen reguliert, stellt sich die Frage der
Legitimation solcher Institutionen. Legitimation

kann vor allem durch die Beteiligung der Betrof-
fenen erreicht werden, z. B mit demokratischen
Prozessen. Viele Regelungen der Software werden
jedoch über Marktprozesse anerkannt, indem Soft-
ware nachgefragt und angewandt wird. So kann
Softwareinstitutionen die Legitimation fehlen. Je
mehr Softwareinstitutionen Zwang auf Individuen
ausüben, desto mehr ist zu fragen, inwieweit der
Einzelne oder die Gesellschaft Einfluss auf die Ent-
wicklung und Ausgestaltung von Software haben
sollten. Da die Schaffung und Durchsetzung von
Softwareinstitutionen oft bei einem Akteur oder bei
wenigen Akteuren liegt, die keiner demokratischen
Kontrolle unterzogen sind, sind die Entwicklungs-
prozesse von Software zu untersuchen, um diese
Akteure und deren Motive aufzudecken sowie
Möglichkeiten zur politischen oder staatlichen
Partizipation bei der Softwaregestaltung [12] und im
Allgemeinen Möglichkeiten zur Verbesserung der
Legitimität zu etablieren.

Allerdings ist dabei zu berücksichtigen, dass
Software nicht gleich Software ist. Stattdessen sind
im Folgenden verschiedene Softwaretypen und
einzelne Anwendungsfälle zu unterscheiden, z. B.
proprietäre versus Open-Source-Software, Soft-
ware als Marktstandards versus Komiteestandards
sowie Software erstellt nach Software-Engineering-
Prinzipien versus Software erstellt durch
,,handwerkliche“ Entwicklung.

Partizipation
durch Open-Source-Softwareentwicklung?

Im Design und Code der Software werden übli-
cherweise Nutzer- und Entwickleranforderungen
umgesetzt. Oft sind nur wenige Akteure invol-
viert, wie etwa ein Kraftwerksbetreiber bei der
Entwicklung einer Kraftwerkssteuerung. Wenn
Software nun zunehmend Einfluss auf die Gesell-
schaft ausübt, kann zur besseren Legitimierung
gefordert werden, mehr Akteure in die Entwicklung
einzubinden. Allerdings stellt sich die Frage, wie
dies organisiert werden kann. Eine Möglichkeit be-
steht im Open-Source-Entwicklungsmodell, in dem
verschiedene Formen einer Beteiligung zu erken-
nen sind. Einerseits können Nutzeranforderungen
unkontrolliert, d. h. ohne zwischengeschaltete Re-
gelungsinstanz über die Weiterentwicklung eigener,
unabhängiger Softwarelösungen umgesetzt werden
(forking) (siehe das Beispiel des Internet Relay Chat
unten).

Andererseits können Anforderungen kontrol-
liert über Plattformen zum Fehler- und Anforde-
rungsmanagement in den Entwicklungsprozess
eingebracht werden. Dies kann entweder relativ
wenig formalisiert oder in formalisierten Prozessen,
wie beispielsweise beim ,,Java Community Process“,
geschehen. Dort finden sich detaillierte Systeme
und Regeln zur Einreichung von Modifikations-
wünschen oder zu Entscheidungsverfahren über die
Umsetzung. Auffallend ist, dass das Entscheidungs-
gremium von Unternehmen dominiert ist (z. B. IBM,
Intel, SAP, Nokia), welche über die zeitlichen und
finanziellen Ressourcen verfügen, um sich an den
Verfahren zu beteiligen.

Da die Gruppe der Open-Source-Entwickler
nicht unbedingt deckungsgleich mit der Gruppe
der Nutzer ist, müssen die Bedürfnisse der letzteren
Gruppe nicht zwangsläufig abgebildet sein. Damit
Nutzer sich als Entwickler beteiligen und ihre Anfor-
derungen unmittelbar einbringen können, müssen
Programmierkenntnisse sowie zeitliche und finanzi-
elle Ressourcen vorhanden sein. Ob die Entwicklung
von Open-Source-Software im unmittelbaren Sinne
der Nutzer erfolgt, ist daher an Voraussetzungen
geknüpft.

Ein Beispiel für die Gestaltbarkeit von Soft-
wareinstitutionen ist die Open-Source-Software
,,Internet Relay Chat“ (IRC). Dabei stellen Privat-
personen mit IRC Software ausgerüstete Server für
andere Nutzer zur Verfügung. Bei frühen Versionen
wurde mit der Serversoftware die Regel imple-
mentiert, dass Nutzer nach dem Ausloggen ihre
Nutzerkennungen (Nickname) und Diskussions-
gruppen (Channel) verloren. Da mit Wachsen des
IRC-Netzes auch die Konflikte um Kennungen stie-
gen, setzen Nutzer zusätzliche Software ein, die ein
Einloggen simulierte und dadurch ein ,,Eigentum“
an bestimmten Nutzer- und Gruppenkennungen
ermöglichte. Dadurch wurde allerdings die Stabilität
des IRC gefährdet. Die Serverbetreiber haben daher
ihrerseits Software angeboten, mit der ebenfalls
Kennungen gesichert werden konnten. Verblei-
bende Konflikte wurden durch das Aufsetzen einer
großen Zahl von weiteren IRC-Netzen aufgelöst, die
unterschiedliche Regelsysteme implementierten.
Das IRC-Beispiel zeigt, dass Technik eine soziale
Ordnung kreieren kann, die nahezu unabhängig
vom bestehenden, äußeren Regelungsgefüge ist. Es
ist ferner ein Beispiel für institutionelle Dynamik,
da die Software und ihre Regeln ständig weiterent-

wickelt wurden. Es zeigt, dass Softwaresysteme –
und damit Softwareinstitutionen – grundsätzlich
auch durch Anwender oder Nutzer veränderbar sein
können [8].

Legitimierung durch Standardisierung
von Software?

Können Softwareinstitutionen einen höheren Grad
an Legitimität erlangen, wenn sie in Standardi-
sierungsverfahren gestaltet werden? Hierbei wird
normalerweise zwischen privaten und staatlichen
Verfahren unterschieden, wobei es aber auch
Zwischenformen gibt.

Im nichtstaatlichen Sektor wird zwischen
Marktstandards und Komiteestandards unter-
schieden. Marktstandards werden von Individuen
oder Firmen entwickelt, gelangen implementiert
in Produkten auf den Markt und werden durch
Marktdurchdringung zum Standard. Marktstan-
dards können einen Zwang zur Anpassung oder
Implementierung für andere Akteure herstellen.
Ihre Legitimierungsprobleme sind noch weitge-
hend ungelöst. Komiteestandards werden hingegen
durch Standardisierungsorganisationen (z. B. DIN,
ETSI, IETF, W3C) nach festen Verfahrensregeln
entwickelt und beschlossen. Die Standardisierungs-
organisationen bemühen sich, eine Input- oder
Output-Legitimierung zu erreichen [33]. Input-
Legitimierung zielt dabei auf die Prozesse der
Standardentwicklung ab, d. h. auf Konsens bei
Entscheidungen und durch eine ausgewogene Be-
teiligung aller Akteure, die Interessen am Standard
haben bzw. von ihm betroffen sind. Problema-
tisch ist, dass mit der Beteiligung in der Regel
Kosten verbunden sind, auch durch den Aufbau
der erforderlichen Expertise. Solche Komitees sind
daher oft durch Industrieinteressen und technisch-
ökonomische Aspekte dominiert, und andere
Interessen wie z. B. Datenschutzfragen werden oft
nur wenig berücksichtigt.

Output-Legitimierung richtet sich hingegen
auf die Legitimierung des Ergebnisses, d. h. des
Standards. Dabei wird weniger auf die Standard-
entwicklung in einem offenen Diskurs geachtet.
Stattdessen bestimmen Verfahrensregeln die Ein-
flussnahme von Interessengruppen von außen
auf den Standardisierungsprozess (z. B. durch
Kommentierung), um eine Berücksichtigung von
Konsumenten-, Arbeitnehmer- oder sonstigen öf-
fentlichen Interessen zu ermöglichen [33]. Insofern

{ SOFTWARE ALS INSTITUTION

sind für den nichtstaatlichen Standardisierungs-
bereich die Output-orientierten Verfahren eine
Möglichkeit der Legitimierung.

Im Bereich der staatlich, d. h. durch ausdrückli-
che gesetzliche Gestaltungsanforderungen gesetzten
Standards, stellt sich nicht mehr die Frage der Le-
gitimität, sondern die der Durchsetzung. Bei neuen
Verfahren, wie z. B. bei elektronischen Geschäftspro-
zessen im Energiebereich, wird die inhaltliche
Ausgestaltung des Standards von den betroffenen
Marktakteuren entwickelt, das Endergebnis wird
aber dann als verbindlicher Rechtsakt durchgesetzt.
Im Energiesektor werden so die für die elektronische
Marktkommunikation zu verwendenden Datenpro-
tokolle festgelegt und damit auch die Möglichkeiten
der daran anknüpfenden Softwareimplementie-
rungen. Dadurch wird zwar Rechtssicherheit für
die beteiligten Akteure erzeugt. Allerdings birgt
die faktische Beschränkung der Beteiligung auf
wenige interessierte Marktakteure die Gefahr der
Konservierung der von diesen präferierten Tech-
niken in sich. Innovative Alternativvorschläge von
nicht beteiligten Akteuren haben kaum eine Chance,
bei der Standardisierung berücksichtigt zu wer-
den. Würde man im Nachhinein Änderungen des
Standards vornehmen – was durch den Änderungs-
vorbehalt des Gesetzes vorgesehen ist – entstünden
für die ursprünglich Beteiligten unkalkulierbare
Investitionsrisiken.

,,Bottom-up“-Gestaltung von Software?
Gegenwärtig ist in der Softwareentwicklung ein
Veränderungsprozess zu beobachten: Traditionell
steuert eine zentrale Instanz den Entwicklungs-
prozess. Softwareanwendungen werden dabei ,,top
down“ durch Software-Engineering entwickelt, also
durch Analyse der Ziele und Wirkungen, auf die die
Software zugeschnitten wird. Im Gegensatz dazu
verändert sich mit dem Aufkommen von Mashups
oder serviceorientierten Architekturen (SOAs) die
Art der Softwareentwicklung; es kommt zu Soft-
wareentwicklung durch dezentrale, unabhängige
Parteien. Statt der hierarchischen Ordnung finden
sich eher markt- und netzwerkartige Strukturen, in
denen Software ,,bottom up“ entwickelt wird. Ba-
sisdienste (z. B. Google Maps) können durch vorab
nicht bestimmbare Entwickler zu neuen Diensten
verknüpft werden. Die Ergebnisse derartiger Soft-
wareentwicklungsprozesse sind nicht mehr genau
planbar, und das gilt auch für die so entstehenden

Regelungsmechanismen. Beispielsweise kann Goo-
gle die entstehenden Google-Maps-Mashups nicht
planen und nur begrenzt durch die Gestaltung der
Basisdienste beeinflussen [23].

Ein ,,bottom-up“-Vorgehen ist allerdings nur auf
der Ebene der Anwendungsentwicklung möglich.
Die Basisdienste oder Basistechnologien entstehen
eher nach dem ,,top-down“-Ansatz. Zudem ist der
,,bottom-up“-Ansatz von der Offenheit und Kompa-
tibilität der Softwaremodule abhängig, da sich sonst
neue Abhängigkeiten ergeben. Künftige Forschun-
gen können sich auf Institutionen zur Gestaltung des
anbieterübergreifenden Zusammenspiels einzelner
Mashup-Dienste konzentrieren oder z. B. Gewähr-
leistung oder Haftung der Diensteanbieter regeln.
Die bisher ungerichtete Entwicklung von Mashup-
Diensten könnte z. B. verstärkt durch monetäre oder
nichtmonetäre Anreize gelenkt werden.

Legitimierung durch Zertifizierung?
Softwareinstitutionen können auch dadurch
legitimiert werden, dass die Einhaltung von Re-
gelkatalogen – die einen gesellschaftlichen Konsens
widerspiegeln – überprüft und zertifiziert wird.
Bisher wurde die Zertifizierung in erster Linie zur
Überwindung von Qualitätsproblemen diskutiert.
Hier sind besonders Fehler bei der Abfrage der
Nutzeranforderungen relevant, die bei der Umset-
zung in Software mitgeführt werden. Die Lösung
des Problems wird vor allem im systematischen
Software-Engineering und im Einbau von Verifikati-
onsschritten gesehen. Zu den für die Legitimierung
relevanten Einzelfragen der Gestaltung von Zertifi-
zierungssystemen kann die Institutionenforschung
Aussagen liefern, beispielsweise zur Unabhängigkeit
des Prüfers, zu Gebührenregelung, zu Prüfungs-
und Sanktionseffektivität und -kosten oder zur
Vermeidung opportunistischen Verhaltens der
Prüfer [10].

Rechtskenntnis und -umsetzung
bei der Softwareentwicklung

Viele gesellschaftliche Werte, die menschliche Inter-
aktionen bestimmen (z. B. der Datenschutz), werden
in formales Recht gegossen. Daher ist nach der
Umsetzung rechtlicher Vorgaben in Software und
den Rechtskenntnissen der Entwickler zu fragen.
Dazu hat eine auf dem Workshop vorgestellte Studie
ca. 100 Softwareentwickler befragt. Die Umfrage
kommt zu einem ernüchternden Ergebnis hin-

sichtlich der Kenntnisse in den Rechtsbereichen
Datenschutz, Barrierefreiheit und rechtliche Risiken
von Webservices. Allerdings wurde auch der Wunsch
vieler Softwareentwickler nach einer besseren recht-
lichen Ausbildung und einer stärkeren Einbeziehung
rechtlicher Fragen in den Entwicklungsprozess
deutlich.

Grundsätzlich hat man erkannt, dass ein dichtes
Netz einzelfallbezogener Normen die Vorhersage-
möglichkeiten des Gesetzgebers überstrapazie-
ren würde, denn nicht alle Regelungstatbestände
können vorhergesehen werden. Regelt man nicht
einzelfallbezogen, sondern schafft Regelungen mit
Interpretationsspielraum, so stellt sich die Frage, ob
die Werkzeuge der Interpretation bzw. Auslegung
(juristische Kommentare, Lehrbücher etc.) für Soft-
wareentwickler auch geeignet sind. Es ist eher zu
vermuten, dass rechtliche Normen einerseits und
Normen zum Entwurf und zum Funktionieren von
Softwaresystemen andererseits nicht einfach inein-
ander überführbar sind. Daraus kann der Bedarf
nach einem ,,generischen“ Recht für Softwareent-
wickler abgeleitet werden. Das wäre ein Aggregat
von Regularien, welches Softwaregestalter handha-
ben könnten, um damit gesellschaftliche Werte im
Systementwurf umzusetzen. Ein Beispiel sind die
,,Creative-Commons“-Lizenzen, die aus den Lizen-
zierungsdetails diverser nationaler Urheberrechte
allgemein verständliche Formulierungen extrahie-
ren und juristischen Laiennutzern zur Verfügung
stellen [9, 15]. Fehlen einfache rechtliche Vorgaben,
besteht die Gefahr, dass Entwickler rechtliche Vor-
schriften ignorieren oder eigene Interpretationen
implementieren.

Anreize zur Durchsetzung
von gewolltem Verhalten

Damit Endnutzer Systeme im Sinne des System-
entwicklers bzw. -betreibers nutzen, müssen oft
passende Anreizmechanismen eingebaut werden.
Deren Analyse liegt im Feld der Institutionenfor-
schung. Dies ist insbesondere bei Plattformen zur
Kooperation der Fall, z. B. bei sozialen Netzwerken
oder auf elektronischen Märkten. Häufig enthalten
diese Systeme suboptimale Anreizmechanismen, wie
dies die vielen ,,Trittbrettfahrer“ in P2P-Netzwerken
ebenso wie die Zurückhaltung von Informationen in
Supply-Chain-Managementsystemen verdeutlichen.
So können selbst technisch ausgereifte Systeme
durch fehlerhafte Anreizausrichtung die Organisati-

onsziele verfehlen. Als Lösung bieten sich einerseits
monetäre Anreize zur Ressourcennutzung und
-bereitstellung an (z. B. beim Grid Computing [17]).
Andererseits sieht man am Beispiel von Open-
Source-Projekten, offenen Teilnahmeplattformen
(z. B. Wikis) oder sozialen Netzwerken, dass der
Leistungsanreiz oft durch eine Rangliste der Leis-
tungen bzw. Beiträge gesteuert wird anstatt durch
monetäre Anreize [30].

Während der Entwicklungs- und Nutzungs-
phase einer Software können Anreizformen im
Sinne des ,,Incentive Engineering“ in die Software
integriert werden, um die intendierte Nutzung
oder gesellschaftlich wünschenswerte Ergebnisse
zu erreichen. Ziel ist es, die Softwarenutzung mit
der Anreizgestaltung zu koppeln. Voraussetzung
für ein anreizkompatibles Software-Engineering ist
allerdings ein Verständnis menschlichen Verhaltens,
das sich aus den Verhaltenstheorien der Ökonomie,
Psychologie, Soziologie oder Politikwissenschaften
ableiten lässt.

Zusammenfassung
Fasst man Softwareanwendungen als Institution auf,
bietet sich die Institutionenforschung zur Analyse
des Sachverhalts und zur Ableitung von Gestaltungs-
optionen an. Die Institutionenforschung liefert den
Technikwissenschaften dazu vielfältige Methoden
und Erkenntnisse z. B. aus den Wirtschafts-, Rechts-
und Politikwissenschaft und eröffnet eine mehr-
dimensionale Perspektive auf Anforderungen an
die Softwareentwicklung und die Verfahren hierzu.
Der Artikel bietet eine Reihe von Beispielen dafür
an, dass Softwaregestaltung verschiedenste gesell-
schaftliche Akteure und Ebenen betrifft und von
ihnen beeinflusst wird. Daher kann sie im Hinblick
auf ihren institutionellen Charakter auch nicht aus-
schließlich mit den Methoden und Erkenntnissen
einer Leitdisziplin allein untersucht werden.

Literatur
1. Agrawal R, Kiernan J, Srikant R, Xu Y (2002) Hippocratic databases. In: Very Large

Data Base. Proceedings of the 28th International Conference on Very Large Data
Bases, August 20–23, 2002, pp 143–154, Hong Kong, China

2. Bizer J (2007) Sieben Goldene Regeln des Datenschutzes. Datenschutz und Da-
tensicherheit – DuD 31(5):350–356

3. Böhm K, Buchmann E (2007) Free riding-aware forwarding in Content-Addressable
Networks. VLDB J 16(4):463–482

4. Grimmelmann J (2005) Regulation by Software. Yale Law J 114:1721–1758
5. Haug S, Weber K (2002) Kaufen, Tauschen, Teilen. Musik im Internet. Peter Lang,

Frankfurt am Main
6. Helberger N (2006) Code and (intellectual) property. In: Dommering E et al. (eds)

Coding Regulation. Essays on the Normative Role of Information Technology. In-

{ SOFTWARE ALS INSTITUTION

formation Technology and Law Series, No. 12, pp 205–248. T.M.C. Asser Press,
The Hague

7. Hodgson G (2006) What Are Institutions? J Econ Issues 40(1):1–25
8. Ishii K (2005) Code Governance. “Code” as Regulation in a Self-governed Internet

Application from a Computer Science Perspective. Dissertation. Fakultät IV – Elek-
trotechnik und Informatik der Technischen Universität Berlin, Technische Universi-
tät Berlin, Berlin. http://ishii.de/kei/codegovernance/Ishii2005-CodeGovernance.pdf
(Abgerufen am 4. Dezember 2009)

9. Ishii K, Lutterbeck B, Pallas F (2008) Forking, Scratching und Re-Merging. Ein in-
formatischer Blick auf die Rechtsinformatik. Technische Universität Berlin, Lehr-
stuhl Informatik und Gesellschaft, Berlin. http://ig.cs.tu-berlin.de/ma/bl/ap/2008/
IshiiLutterbeckPallas-ForkingItch-scratchingUndRe-merging.
EinInformatischerBlickAufDieRechtsinformatik-2008-03-03.pdf (Abgerufen am
4. Dezember 2009)

10. Jahn G, Schramm M, Spiller A (2005) The Reliability of Certification: Quality La-
bels as a Consumer Policy Tool. J Consumer Policy 28(1):53–73

11. Katyal NK (2002) Architecture as Crime Control. Yale Law J 111:1039–1139
12. Kesan JP, Shah RC (2005) Shaping Code. Harv J Law Technol 18(2):319–399
13. Lessig L (1999) Code and other laws of cyberspace. Basic Books, New York
14. Lessig L (2006) Code Version 2.0. Basic Books, New York
15. Lutterbeck B (2008) Vom ,,empirischen“ zum ,,generischen“ Recht – der Beitrag

der Institutionenökonomik. Beitrag für den Workshop ,,Software als Institution“,
veranstaltet vom Karlsruhe Institute of Technology (KIT), 12. Dezember 2008, Karls-
ruhe. Technische Universität Berlin, Berlin. http://ig.cs.tu-berlin.de/ma/bl/ap/2008/
BL-VomempirischenZumgenerischenRechtDerBeitragDerInstitutionenoekonomik-
2008-12-30.pdf (Abgerufen am 4. Dezember 2009)

16. Ménard C, Shirley MM (2005) Introduction. In: Ménard C et al. (eds) Handbook of
New Institutional Economics. Springer, Berlin Heidelberg, pp 1–18

17. Neumann D, Holtmann C, Orwat C (2006) Grid-Economics. Wirtschaftsinformatik
48(3):206–209

18. North DC (1991) Institutions. J Econ Perspectives 5(1):97–112
19. North DC (1992) Institutionen, institutioneller Wandel und Wirtschaftsleistung.

Die Einheit der Gesellschaftswissenschaften, Bd. 76. Mohr, Tübingen
20. North DC (2005) Institutions and the Performance of Economies Over Time. In:

Ménard C et al. (eds) Handbook of New Institutional Economics. Springer, Berlin
Heidelberg, pp 21–30

21. OECD (1980) OECD Guidelines on the Protection of Privacy and Transborder Flows
of Personal Data. Organisation for Economic Co-operation and Development, Paris

22. Ostrom E (2005) Doing Institutional Analysis: Digging Deeper than Markets and
Hierarchies. In: Ménard C et al. (eds) Handbook of New Institutional Economics.
Springer, Berlin Heidelberg, pp 819–848

23. Pallas F (2008) Simple Regeln für komplexe Strukturen: Was die Informatik von
der NIÖ lernen kann. Diskussionspapier zum Workshop ,,Software als Institution“,
Karlsruhe Institute of Technology. Technische Universität Berlin, Lehrstuhl Infor-
matik und Gesellschaft, Berlin. http://ig.cs.tu-berlin.de/ma/fp/ap/2008/Pallas-
SimpleRegelnFuerKomplexeStrukturenWasDieInformatikVonDerNiOeLernen
Kanntext-2008-12-12.pdf (Abgerufen am 4. Dezember 2009)

24. Radin MJ (2004) Regulation by Contract, Regulation by Machine. J Institut Theo-
ret Econ – Z gesamte Staatswiss 160(1):142–156

25. Reidenberg JR (1998) Lex Informatica: The Formulation of Information Policy Ru-
les Through Technology. Texas Law Rev 76(3):553–584

26. Richter R, Furubotn E (1996) Neue Institutionenökonomik: eine Einführung und
kritische Würdigung. Neue ökonomische Grundrisse. Mohr, Tübingen

27. Richter R (2005) The New Institutional Economics: Its Start, its Meaning, its Pro-
spects. Eur Bus Organ Law Rev 6(2):161–200

28. Roßnagel A (2005) Modernisierung des Datenschutzrechts für einen Welt allge-
genwärtiger Datenverarbeitung. Multimedia Recht 8(2):71–75

29. Samuelson P (2003) DRM {and, or, vs.} the law. Commun ACM 46(4):41–45
30. Sauer RM (2007) Why develop open-source software? The role of non-pecuniary

benefits, monetary rewards, and open-source licence type. Oxford Rev Econ Po-
licy 23(4):605–619

31. Shah RC, Kesan JP (2003) Manipulating the governance characteristics of code.
Info 5(4):3–9

32. Wagner RP (2005) On Software Regulation. Southern California Law Rev 78:457–
520

33. Werle R, Iversen EJ (2006) Promoting Legitimacy in Technical Standardization. Sci
Technol Innovation Stud 2(2):19–39. http://www.sti-studies.de/fileadmin/articles/
iversen-werle-230306.pdf (Abgerufen am 4. Dezember 2009)

34. Williamson OE (1987) The Economic Institutions of Capitalism. Free Press, New
York

35. Zippelius R (1971) Einführung in die juristische Methodenlehre, 2. Aufl. Beck,
München

http://ishii.de/kei/codegovernance/Ishii2005-CodeGovernance.pdf
http://ig.cs.tu-berlin.de/ma/bl/ap/2008/IshiiLutterbeckPallas-ForkingItch-scratchingUndRe-merging.EinInformatischerBlickAufDieRechtsinformatik-2008-03-03.pdf
http://ig.cs.tu-berlin.de/ma/bl/ap/2008/IshiiLutterbeckPallas-ForkingItch-scratchingUndRe-merging.EinInformatischerBlickAufDieRechtsinformatik-2008-03-03.pdf
http://ig.cs.tu-berlin.de/ma/bl/ap/2008/IshiiLutterbeckPallas-ForkingItch-scratchingUndRe-merging.EinInformatischerBlickAufDieRechtsinformatik-2008-03-03.pdf
http://ig.cs.tu-berlin.de/ma/bl/ap/2008/BL-VomempirischenZumgenerischenRechtDerBeitragDerInstitutionenoekonomik-2008-12-30.pdf
http://ig.cs.tu-berlin.de/ma/bl/ap/2008/BL-VomempirischenZumgenerischenRechtDerBeitragDerInstitutionenoekonomik-2008-12-30.pdf
http://ig.cs.tu-berlin.de/ma/bl/ap/2008/BL-VomempirischenZumgenerischenRechtDerBeitragDerInstitutionenoekonomik-2008-12-30.pdf
http://ig.cs.tu-berlin.de/ma/fp/ap/2008/Pallas-SimpleRegelnFuerKomplexeStrukturenWasDieInformatikVonDerNiOeLernenKanntext-2008-12-12.pdf
http://ig.cs.tu-berlin.de/ma/fp/ap/2008/Pallas-SimpleRegelnFuerKomplexeStrukturenWasDieInformatikVonDerNiOeLernenKanntext-2008-12-12.pdf
http://ig.cs.tu-berlin.de/ma/fp/ap/2008/Pallas-SimpleRegelnFuerKomplexeStrukturenWasDieInformatikVonDerNiOeLernenKanntext-2008-12-12.pdf
http://www.sti-studies.de/fileadmin/articles/iversen-werle-230306.pdf
http://www.sti-studies.de/fileadmin/articles/iversen-werle-230306.pdf

	Einleitung
	Warum ,,Software als Institution``?
	Zum Institutionenbegriff
	Verständnis von Softwareinstitutionen
	Wie regelt Software?

	Softwareinstitutionen und Recht
	Regelungswirkungen von Softwareinstitutionen

	Gestaltungsfragen von Softwareinstitutionen
	Partizipation durch Open-Source-Softwareentwicklung?
	Legitimierung durch Standardisierung von Software?
	,,Bottom-up``-Gestaltung von Software?
	Legitimierung durch Zertifizierung?
	Rechtskenntnis und -umsetzung bei der Softwareentwicklung
	Anreize zur Durchsetzung von gewolltem Verhalten

	Zusammenfassung
	Literatur

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

